ake It to the Limit: The Power of the Infinite
Key Idea of Calculus
· Make a series of better & better that
converge to the desired quantity as a
We have seen this before:
0.9
0.99
0.999
0.9999
: Limit? One one hand :
On the other hand:
This is what we mean when we say
It is also important for understanding the number, which is important for compounded interest.
To illustrate the concept of a limit, we look at Archimedes'
strategy for finding the area of a
Areas of shapes
How many 1×1 squares does it take to cover the shape
exactly, with no overlap and no squares sticking out?

Rectangles V

area = (# squares covering shape)

(area of rectangle) = () × ()

Cut & rearrange other shapes to get rectangles ...

rectangle!

(area of parallelogram) = (____) x (_____)

(area of triangle) = _ (base) × (height)

Cut up & rearrange?
Pieces will always have curved parts...

Circles & the Number T

circumference

$$\pi = \frac{\text{circumference}}{\text{diameter}}$$

Ratio is the ____ for all circles.

Like 12, the number T is _____ (Lambert, 1760s).

Today, _____ digits of T are Known (Solidigm, 2024)

But _____ is good enough for odometer & speedometer.

NASA uses ___ digits past the decimal point.

Back to the area of a circle.

Archimedes' Strategy: Cut into wedges & rearrange.

"Scalloped Rectangle"

More & more wedges... scalloped rectangle becomes more & more like a rectangle, whose area we can compute!

After the Activity:

"Scalloped Rectangle"

Archimedes' Estimate For 17:

perimeter of < 2πr < perimeter of ____polygon

_____polygon

Approximation & iteration... modern field of numerical analysis

- engineer cars that are optimally streamlined
- simulations for chemotherapy drugs & cancer cells

economics ... technology ...