| ake It to the Limit: The Power of the Infinite | |--| | Key Idea of Calculus | | · Make a series of better & better that | | converge to the desired quantity as a | | We have seen this before: | | 0.9 | | 0.99 | | 0.999 | | 0.9999 | | : Limit? One one hand : | | On the other hand: | | This is what we mean when we say | | It is also important for understanding the number, which is important for compounded interest. | | To illustrate the concept of a limit, we look at Archimedes' | | strategy for finding the area of a | | Areas of shapes | | How many 1×1 squares does it take to cover the shape | | exactly, with no overlap and no squares sticking out? | | | Rectangles V area = (# squares covering shape) (area of rectangle) = () × () Cut & rearrange other shapes to get rectangles ... rectangle! (area of parallelogram) = (____) x (_____) (area of triangle) = _ (base) × (height) Cut up & rearrange? Pieces will always have curved parts... ## Circles & the Number T circumference $$\pi = \frac{\text{circumference}}{\text{diameter}}$$ Ratio is the ____ for all circles. Like 12, the number T is _____ (Lambert, 1760s). Today, _____ digits of T are Known (Solidigm, 2024) But _____ is good enough for odometer & speedometer. NASA uses ___ digits past the decimal point. Back to the area of a circle. Archimedes' Strategy: Cut into wedges & rearrange. "Scalloped Rectangle" More & more wedges... scalloped rectangle becomes more & more like a rectangle, whose area we can compute! ## After the Activity: "Scalloped Rectangle" ## Archimedes' Estimate For 17: perimeter of < 2πr < perimeter of ____polygon _____polygon Approximation & iteration... modern field of numerical analysis - engineer cars that are optimally streamlined - simulations for chemotherapy drugs & cancer cells economics ... technology ...